
J. Fluid Mech. (1974), vol. 65, part I ,  pp.  189-206 

Printed in Great Britain 
189 

The solution of viscous incompressible jet and free- 
surface flows using finite-element methods 

By R. E. NICKELL, R.  I. TANNER AND B. CASWELL 
Division of Engineering, Brown University 

(Received 9 March 1973 and in revised form 9 February 1974) 

We discuss the creation of a finite-element program suitable for solving 
incompressible, viscous free-surface problems in steady axisymmetric or plane 
flows. For convenience in extending program capability to non-Newtonian 
flow, non-zero Reynolds numbers, and transient flow, a Galerkin formulation of 
the governing equations is chosen, rather than an extremum principle. The re- 
sulting program is used to solve the Newtonian die-swell problem for creeping 
jets free of surface tension constraints. We conclude that a Newtonian jet ex- 
pands about 13 %, in substantial agreement with experiments made with both 
small finite Reynolds numbers and small ratios of surface tension to viscous 
forces. The solutions to the related ‘ stick-slip ’ problem and the tubeinlet problem, 
both of which also contain stress singularities, are also given. 

1. Introduction 
The extrusion of viscous jets is a subject of considerable rheological importance 

and great analytical difficulty, being a viscous fldw problem with a free surface. 
There are few analytical solutions involving free surfaces and, in those that do 
exist, some approximation is usually made in order to facilitate the solutions. 
Typical assumptions, for example, are to postulate a free-surface shape or 
to assume a small displacement from a known shape. When nothing is known 
about the shape of the free surface in advance, little progress has been reported. 
A further complication that arises with mixed boundary-value problems, in 
general, and the jet-flow problem, in particular, is the presence of a stress singu- 
larity a t  the line of separation (Michael 1958); similar singularities have been 
discussed by Huh & Scriven (1971) for the problem of a drop wetting a surface. 
Because of the known difficulties, numerical methods were chosen for the resolu- 
tion of the viscous jet and similar problems. This paper relates our experiences 
with this class of problems. 

For the case of non-Newtonian fluids, the extrudate is known (Lodge 1964) 
to expand to perhaps several multiples of the die diameter, giving the ‘die- 
swell’ phenomenon. Perhaps less well known is the significant swelling of a 
purely Newtonian flow emerging from a long tube a t  sufficiently low Reynolds 
numbers. This expansion seems to have been discovered experimentally by 
Middleman & Gavis (1961). They showed that expansion occurred below a 
Reynolds number of 16, and that contraction was present a t  higher Reynolds 
numbers. To account for surface tension effects, a correction formula was given 
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in this paper, which apparently showed that the effect of surface tension on the 
final jet diameter was quite important. For example, the final jet diameter, 
made dimensionless by using the tube diameter, was measured as 1-13 a t  a 
Reynolds number of 2. After removing the effect of surface tension by applica- 
tion of the correction formula, the predicted final dimensionless diameter of a 
surface-tension-free jet was only 1-07. Subsequently, however, two amendments 
were made to the correction formula, and the final one (Gavis 1964) showed that 
scarcely any correction to the original measured data was needed, and conse- 
quently the expansion for a surface-tension-free jet a t  a Reynolds number of 2 
would be close to 13 yo. Confirmation of these results was provided by Goren 
& Wronski (1966), who showed experimentally that the effect of surface tension 
on the final jet diameter was quite weak. For example, changing the surface 
tension parameter S (defined to be pcrD/q2) from 0.45 to 0-054 at a Reynolds 
number of about 4 produced no significant change in the expansion ratio, which 
was about 10 yo. Here p is the fluid density, u the surface tension, D the tube 
diameter and 7 the fluid viscosity. The mean jet velocity U will be taken as a 
characteristic speed, and thus the Reynolds number Re is defined to be piiD/q. 
The parameter S ,  which does not depend on U, is recognized as the product of 
Re and g / q U ,  the latter group giving a measure of the ratio of surface tension 
forces to  viscous forces in the flow. Thus, when S/Re < 1, we may expect the 
effect of surface tension forces to be negligible. 

I n  the experiments of Goren & Wronski (1966)) a variation of SIRe from about 
0.1 to 0.01 produced no significant effect on the final jet diameter a t  a Reynolds 
number of 4. To obtain results a t  a lower Reynolds number, one of the present 
authors (in some unpublished work dating from 1965) made some experiments in 
which a 1000-poise silicone liquid was slowly extruded through a +inch diameter 
tube into a bath containing a mixture of kerosene and carbon tetrachloride of 
matching density. Thus problems with gravitational forces were eliminated, and 
the interfacial tension, inertia and external viscous forces were very small com- 
pared with the viscous forces in the jet itself. The external bath viscosity was 
about 10-4 of the jet velocity, S was about yielding 
an expansion of 13 1 %. A much more extensive set of experiments a t  very low 
Reynolds and S numbers was performed by Batchelor & Horsfall (1971), who 
also used extrusion into a bath of matching density to avoid problems with 
gravitational forces. For a Newtonian fluid with a viscosity of lo5 poise, they 
reported a mean swelling of 13.5%. We consider these experiments to be the most 
useful in defining the jet shape under conditions when Re and S/Re approach zero. 

Thus there seems to be a limiting swelling ratio in the absence of inertial and 
surface tension effects. Apparently this is not obvious; and Richardson ( 1 9 7 0 ~ ) )  
unaware of any experiments at Reynolds numbers below 2, suggested that there 
might not be any jet-type flow in a strictly creeping flow, and that the very con- 
cept of a jet is one requiring inertia. His argument is that one might expect the 
fluid to fill all space on emerging from a tube if the tendency, due to inertia, of 
the fluid to continue in a state of uniform motion is removed. But, even without 
inertia, it seems possible to us that a jet-like form might occur in a creeping flow, 
if the choice between it and a space-filling flow is available, and, for example, 

and Re was about 
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a lower rate of energy dissipation resulted from the jet-like form. (These rates of 
energy dissipation are compared a t  the end of $5.) We are also not convinced 
by the argument from mass and momentum balances (Richardson 1970u), 
which appears to show that no free Newtonian jet (no gravity, backpull on the 
jet or surface tension considered) can expand unless the total axial force a t  the 
jet exit is negative. This would imply that a strictly inertialess jet cannot expand, 
since the total axial exit force is then exactly zero. 

I n  fact, Richardson’s arguments break down when we consider strictly creep- 
ing flows, since the momentum balance then does not involve the final jet 
diameter and velocity and, therefore, no bound on the die-swell can be found 
from his method. The boundary-value problem must be solved directly in this 
case. An expansion in powers of the Reynolds number, as attempted by Richard- 
son, does not circumvent the difficulty. He shows that the estimate of swelling 
a t  zero Reynolds number involves a coefficient that only appears in the first- 
order perturbation (the coefficient being multiplied by the Reynolds number). 
The coefficient cannot be ignored in attempting to calculate die-swell at zero 
Reynolds number if a momentum balance is used. We fail to see how the presence 
of this coefficient in the swelling ratio suggests non-uniqueness for creeping flows; 
it seems rather that one cannot determine the swelling from momentum con- 
siderations for strictly creeping flows. 

Nevertheless, we have found the two papers by Richardson (1970a,b) very 
useful, as will be seen below, and our work might be considered as a computer 
experiment to test some of these ideas. The main consideration, however, is of 
broader scope, and consists of presenting an efficient computational method that 
is well adapted to the solution of incompressible viscous flow problems with mixed 
boundary conditions and unknown free surfaces. 

The main computational difficulty is the unknown free surface, on which we 
require simultaneously that the normal stress, the shear stress and the normal 
velocity are zero. (If surface tension is retained, the boundary conditions are 
more complex; here we do not consider these complications, although it is hoped 
to  do so in future computations.) Hence, we shall restrict the present discussion 
to  zero Reynolds numbers and Newtonian flow, although the computational 
scheme is perfectly general in this regard. At present, the program is limited to 
steady plane and axisymmetric flows. 

When the literature on computational methods in fluid mechanics is examined, 
the overwhelming tendency is to use a stream function for the incompressible 
axisymmetric/plane flow class of problems. Generally speaking, the sequence of 
calculations is to find the stream function first and recover the pressure in a 
separate computation. For free-surface viscous flow problems, this procedure is 
most inconvenient, since the free boundary conditions are given in terms of the 
stress components, which involve the pressure explicitly. Furthermore, double 
differentiation of the stream function (to find the stresses) is a numerically noisy 
operation and should be avoided where possible. Another alternative is the MAC 
method, and a satisfactory solution of the exact free-surface boundary condition, 
using this approach, can be traced from the work of Pracht (1971). We shall not 
use the MAC method here, primarily because the method is somewhat wasteful, 
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in terms of computational effort, for our class of problems, and we view cost 
as an essential aspect of our numerical work. I n  agreement with Pracht (1971), 
however, the velocity components and the pressure are chosen as primitive 
computational variables for the convenient treatment of free-surface problems. 
Either finite-difference or finite-element methods can then be used to discretize 
the governing equations. The former are more widely used in fluid mechanics 
computations, but they involve annoying difficulties in the satisfaction of boun- 
dary conditions or irregular or unknown boundary meshes. For this reason, the 
finite-element approach, which largely avoids these difficulties, was implemented. 

The finite-element method has received considerably less application in fluid 
mechanics than in solid mechanics. I n  the latter field, for example, an insistence 
upon strict incompressibility is comparatively rare, and few examples of applica- 
tion are seen in the literature, save for specialist publications, such as those 
sponsored by the solid propellent rocket industry. Herrmann (1965) produced 
a variational scheme that is a suitable basis for an incompressible finite-element 
program, and could be regarded as a theoretical foundation for Stokes flow 
problems. For general creeping flows, solutions using finite elements have been 
given by Atkinson et al. (1969, 1970) and by Thompson, Mack & Lin (1969). 
Chan & Larock (1973) have investigated potential jets. The latter two permit 
free surfaces in the flow field, but neglect either viscosity or inertia; uniquely, 
velocities and pressure are used as primitive variables. While Thompson et al. 
(1969) are not quite clear about whether Lagrangian or Eulerian spatial co- 
ordinates are being used, one must really divide the space containing the material 
into finite elements when adopting the usual Eulerian formulation for the Navier- 
Stokes equations. The finite elements are not now discrete pieces of material 
always composed of the same fluid particles, as in a Lagrangian solid mechanics 
formulation; instead, the particles flow through the elements. Apart from some 
potential flow and lubrication studies and the work of Olson (1972)) Oden & 
Wellford (1972), Cheng (1972) and Taylor & Hood (1973), mentioned again 
below, we are unaware of any other relevant, published work on fluid mechanics 
that actually exhibits problem solutions (including inertia effects) using finite 
elements, and further exploration is indicated. 

It is worth pointing out, a t  this time, that the finite-element method is ageneral- 
ization (in terms of the ease of construction of approximating sequences) of the 
Galerkinmethod discussed by Orszag (1971)) Fox & Deardorff (1972) and others. 

I n  $2 we discuss the basic theoretical approach, and $ 3  describes the pro- 
gram. Finally, $04 and 5 exhibit solutions to the free jet and other problems. 

2. Basic analytical principles 
For the general formulation we shall simply let the flow be steady; we shall 

not restrict ourselves to plane or axisymmetric flows a t  this stage. In  a Cartesian 
tensor representation we have the conservation laws 
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av, 
ax, 
_ -  - 0, 

where vi are the velocity components in the direction of xi, fi are the body force 
components, and t ,  are the stress components; DvJDt signifies, for steady flow, 
the acceleration vjavi/axj. A constitutive equation is necessary, and here we are 
concerned only with the Newtonian case 

where p is the pressure and Sii are the components of the unit tensor. 
Boundary conditions are given on the components of vi over part of the 

boundary (8,) and traction, or stress, boundary conditions over the rest of the 
boundary (S,) ; the entire boundary is S = 8, + S,. On St we shall assume 

t i jn j  = q, (2.4) 

where the Ti are given and ni is the outward-pointing normal unit vector on the 
surface. 

As is well known, and has been re-emphasized recently (Finlayson 1972), no 
extremum principle of the classical type exists for this problem. Hence the 
conventional methods for formulating the finite-element equations fail (Zien- 
kiewicz 1971). An alternative is the Galerkin method (Kantorovich & Krylov 
1964; Szabo & Lee 1969; Zienkiewicz & Taylor 1972), or the related energy- 
balance ideas of Oden (1970) and Oden & Wellford (1972). Olson (1972) has given 
finite-element solutions of the Navier-Stokes equations through the use of a 
restricted variational method with a stream function; Cheng (1972) also uses 
a stream function. Taylor & Hood (1973) have solved some problems involving 
time dependence and inertia forces. They have not considered problems with 
free surfaces and stress singularities, however, and no comparison is available 
between their computed results for drag on a cylinder and corresponding experi- 
mental results. Thus the accuracy of their method in the complex problems 
considered in the present paper is unknown; the work of Oden & Wellford (1972) 
also does not consider free surfaces. 

To use the Galerkin method, we assume that the solution vector (vi,pp> can 
be expressed in the form 

(2.5) 

where (vT,p*) is a particular integral of the system satisfying the boundary 
conditions on S,, the aim and b, are unknown constants, and the uim and 4, are a 
set of ‘trial’ functions satisfying zero velocity boundary conditions on S, (but 
not necessarily the stress boundary conditions on S,). The trial functions are 
assumed to form a complete set of functions over the fluid-filled space. If (2.1) 
and (2.2) are arranged in vector form as an operator on (vi,p) and the assumed 
solution (2.5) is inserted therein, a residual vector R is obtained since, in general, 
the trial functions will not satisfy the conservation equations exactly. The 
Galerkin process then makes each element of R orthogonal to each corresponding 
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element of the M vectors (uim,cjm) in turn, giving 4M equations for the 4M 
unknowns aim, b,. Thus we find 

and 

~ , ( ~ ~ + p ( f i - - ~ ) ) u , , d V  = 0 (inotsummed; m = 1, ..., M ) ,  (2.6) 

(2.7) 

Use of the divergence theorem on the first part of (2.6), using (2.4) and the vanish- 
ing of uiln on S,, yields 

(i not summed; m = 1, ..., $1). (2.8) 

This form, with ( 2 . 7 ) ,  is the basis of the method used by Taylor 85 Hood (1973) 
and Oden & Wellford (1972). The reduction of the order of the differential opera- 
tor is characteristic of the finite-element method, and permits the use of trial 
functions which are only once differentiable. We shall retain (2.7),  which gives M 
linear equations for the aim, but a more symmetrical form than (2.8) will be used 
in the present treatment. To find this form, multiply each of the components of 
(2.8) by an arbitrary constant., aim say, and sum over i and m. Defining 

iw 
svi = 2 airnu,,, (2.9) 

m = l  

we may now rewrite the sum over (2.8) as 

This is now formally identical (except for the (Dv,/Dt)/Dt term) to the variational 
equation of Thompson et al. (1969). Since all the aim are arbitrary, (2.10) may be 
split into 3M equations for the a,,, b, by the process used in that paper. The de- 
tails of the reduction to separate components is discussed in § 3. The advantage 
of the present formulation is that, for the case of creeping flow, the numerical 
procedure is based on an extremum principle. In  general, if Dv,lDt is not neglec- 
ted, the equations for the aim, b,, are nonlinear; for Stokes flow, they are linear. 
Note also that, in two important special cases, the surface integrals in (2.10) 
vanish (it is always supposed that the trial functions satisfy the essential bound- 
ary conditions on vi): (i) when the surface tractions vanish; and (ii) when the 
fluids 'slips' without shear stress along a fixed boundary (Richardson 1970a). 

3. The finite-element program 
The computer program, called AXFINR, is a system of FORTRAN routines 

that can be used to solve, approximately, axisymmetric or plane fluid mechanics 
problems having a free-surface boundary condition, with a viscosity that may 
depend upon the rate of deformation, and including an Oseen-type approxima- 
tion to the convective acceleration terms. By ' Oseen-type approximation', we 
mean that, a t  each stage in the iterative procedure, in the nonlinear convective 
terms in the acceleration, we set viavilaxj equal t o  vqavi/axj, where vy is the best 
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a3 ‘(4, +, 0) 
I r ,*  

( b )  Triangular co-ordinate system. 
FIGURE 1. (a)  Linear strain triangle nodal variables. 

available known estimate of vi. The original version of the program was con- 
ceived (Schkade 1970) for solving elasticity boundary-value problems for solid 
materials that were incompressible or nearly incompressible, using the mixed 
variational principle of Herrmann (1965) that introduced a quantity H propor- 
tional to the mean tension as a primary variable, in addition to the displacement 
field. This version has been modified to include an iterative procedure for the 
free-surface boundary condition and the nonlinearities associated with non- 
Newtonian flow and non-zero Reynolds numbers. The following discusses only 
the detailed points peculiar to AXFINR; for a general discussion of the con- 
struction of finite-element programs see Zienkiewicz (1971). 

The basic finite element is a 20 degree-of-freedom general quadrilateral com- 
posed of four 15 degree-of-freedom triangles (for axisymmetric problems, this 
should be thought of as an axisymmetric ring of quadrilateral cross-section). 
For each of the triangular subelements, the velocity components are expressed 
as quadratic functions of the spatial variables, while the mean tension is assumed 
to be a linear function (an adjunct program that is used to compute temperature 
distributions in the fluid invokes a linear assumption for the scalar temperature 
field, as well). The arrangement of nodal point variables is shown in figure 1 (a) .  
After matrix assembly of the contributions from the four triangles, the eleven 
interior degrees of freedom associated with the common midside nodes and the 
quadrilateral centroid are condensed from the system. After the solution has 
been obtained for the retained degrees of freedom, these interior quantities 
can be found, since the elimination operations are normally saved for later use. 

13-2 



196 R. E .  Nickell, R. I .  Tanner and B. Caswell 

A convenient procedure for developing the triangular subelement stiffness- 
rate matrix and load vector is to consider a co-ordinate transformation on the 
spatial variables ( r ,  z )  to a set of triangular co-ordinates (or area co-ordinates, as 
they are sometimes called: Felippa 1965). Referring to figure 1 (b ) ,  the area co- 
ordinates ( g,, b, 6) are given by 

[, = A,/A (i = 1 , 2 , 3 ) ,  (3 .1)  

where A is the total area of the triangle. Note that the quantities a,, b,, etc. 
can be thought of as vector components, and that the area can be found from 

2 A  = ujbi-aibi, (3 .2)  
3 3 

i=l i=l 
where i andj  denote two vertices of the triangle. Also note that C ad = C b, = 0, 

and that Cl -t- C2 + Q = 1.  The transformation can thus be expressed by 

2A& = 2A,+b,r+u,z ,  (3.3) 

and its inverse can be cast in matrix form as 

1 1  ia, = [;; 1; j-{3. 
From (3 .3) ,  the spatial derivatives are seen to be 

and, from (3 .4) ,  

(3.4) 

Functions, and their derivatives, that are to  be interpolated over the triangle 
can be found from the expression 

fG) = f O T .  h(C,), (3 .7)  

where the vector f O  represents the nodal point values of the function and the vec- 
tor h(&) indicates either linear or quadratic interpolation. For the mean tension 
variable 

whereas, for the velocity components, 

hT(&;i) = (!L C27 C3),  (3 .8)  

hT(&) = (ci(2ci- < 2 ( 2 5 2 -  b ( 2 c 3 -  4&'&, 4'&:253, 4'&ci)* (3 .9 )  

With these preliminaries in mind, define a vector composed of the functions 

VT(Cd = (U. ,W,H),  (3.10) 
to be interpolated 

where u is the radial component of velocity, w is the axial component of velocity 
and H is the mean tension normalized by a reference viscosity, qot. Given that the 
vector of nodal point unknowns YO is arranged so that 

voT = wl, uZ, w2, H2, W3r H3, u41 w4, u5, w5% w6), ( 3 * 1 1 )  

t H is related t o  the pressure p by the rule H =  -p/v,,. 
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the interpolation polynomial terms can be arranged so that 

v(Cd = a(CJ .vo* (3.12) 

In  a similar manner, define a vector composed of derivatives of the velocity 
field and the mean pressure 

(3.13) 

and note that, using (3 .6) ,  
4 C i )  = PKi) .vo. (3.14) 

The Galerkin method, as applied to this class of problems, then yields 

S, [w. D . E - i ~ .  BI rdrdedx = j [W . r] d ~ ,  (3.15) 

where the symbol 6 refers to the trial function corresponding to a particular 
quantity; T and B denote the prescribed boundary traction vector and the 
equivalent body force vector, respectively ; and D is a constitutive matrix given by 

o o o * * o  

* * g o o 0  

The matrix D is written for the special case of incompressibility, but is easily 
generalized to include fluid compressibility, if required. The equivalent body 
force vector B can be decomposed into 

B = p(f - a), (3.17) 

where p is the density, f is the body force vector, and a is the acceleration vector. 
With an Oseen-type approximation, the latter term can be written as 

S,[s.. . v +  tw. +2. v] rdrdedz,  (3.18) 

where (PI and q52 are operational matrices given by 

(3.19) 

(3.20) 

Carrying out the volume and surface area integration indicated in (3.5) and 
(3.18) (note that closed form integration is not feasible for the most general case, 
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thereby giving rise to  numerical (Gaussian) integration), the governing matrix 
equation for the element can be written as 

(K+Ml+M,).vo = F, (3.21) 
where 

a2'$,adV,  M, = 1 aT'$,adV,  (3.22) K = 1 PZ'DPdV, M, = 
V V V 

and 

A careful examination of M, and M, reveals that, in general, both are 
asymmetric. This leads to a number of interesting computational choices, which 
will be reported upon in later work: (i) the assembled equations can be solved as an 
asymmetric system; (ii) both M, and M, can be placed on the right-hand side 
of (3.21) and multiplied by the nodal point vector of the previous iteration; or 
(iii) some combination of the two. I n  this case, we selected the last option and 
formed the matrices 

MT =+(MT+M,+M;+M,) (3.23) 

and MZ = *(Ml- MT+ M,- MT), (3.24) 

then the matrix equation for the 'kth' iteration becomes 

(K + M 7 ) .  ~ ( g k )  = F - Mz . ~ ( ~ - 1 ) .  0 (3.25) 

4. Creeping flow solutions without free surfaces 
Because of the refined finite element used, solutions to Poiseuille flow are 

essentially exact, giving errors of order lop6 on the primitive variables (IBM 
360167 computer, selective double-precision arithmetic). A more exacting 
test is a flow problem with stress singularities in the field. Two such problems are 
discussed here, in order to  demonstrate the accuracy available for both overall 
quantities and local variables. 

A problem of interest in viscometry (Weissberg 1962) concerns the pressure 
drop, in excess of that due to  Poiseuille flow, a t  the entrance of a sharp-edge tube 
(figure 2 ) .  No analytical or accurate numerical solutions are known, to us, that 
give the details of the flow field; however, Weissberg's (1962) variational calcula- 
tion of the excess pressure drop is believed to give an accurate bound that is 
useful for comparison with our computed values. He has concluded that the 
extra pressure drop for the inlet problem is near to 

AP, = 3*00~&/2R;, (4.1) 

where Q is the total flow rate, R, is the tube radius, and rj is the fluid viscosity. 
For the finite-element solution, 150 elements (1000 equations) were used to 

model the field. It should be noted that, in general, infinite or semi-infinite 
regions must be dealt with in such problems. I n  order to economize on the size 
of the field to be computed, we have used knowledge of the eigenvalues governing 
the extinction of disturbances in creeping flows between plane walls or in tubes 
(Tanner 1963; Waldron 1966; Zidan 1969). Generally speaking, these disturbances 
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will be attenuated by a factor of about e-6 to e-9 in a flow distance of one dia- 
meter, or width, and, therefore, the computing fields can be of commensurate 
length. In  this way, we computed the pressure drop between the exit plane and 
the zero-stress contour (figure 2 ) ,  finding 

Ape = 2.999~&/2R$ (4.2) 

This remarkably accurate result was insensitive to mesh adjustments, although 
the stress and velocity fields were not of comparable accuracy, especially near 
the stress singularity a t  the inlet corner A .  

In  order t o  exhibit the details of the stress field near a singularity, we con- 
sidered the plane, creeping-flow, ‘ stick-slip ’ problem (figure 3 (a)). Richardson 
( 1 9 7 0 ~ ~  b), in an investigation of die-swell, used integral transform techniques to 
solve this problem, and provided sufficient numerical details to allow an assess- 
ment of the accuracy of our program. The element pattern used in our investiga- 
tion is shown in figure 3 (a ) ;  135 elements are shown. The sketch (figure 3 (b)) 
shows how the stick-slip condition was modelled. The two smallest elements have 
lengths of 0.04 units ( I  unit = channel half-width), and, as seen in figure 1 (a), 
boundary conditions on velocities can be imposed at the midsides of elements, 
in addition to the vertices. This implies that the origin of the singularity can be 
located precisely. 

This singularity is the dominant feature that we wish to examine in our numeri- 
cal approximation. According to Richardson, the strength of the singularity is 
such that the x component of velocity behaves as 

u(x,  1) N 1*62,/x for x -+ O+. (4.3) 

Thus, the singularity is of the form given by Michael (1958). The computed 
dimensionless velocity is plotted, in figure 4(a ) ,  as a function of distance down- 
stream from the singularity and the agreement with Richardson’s results is 
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Prescribed 
velocity 

V = O  

u=2ii(l -y/q 

t y’L. 
‘Slip’ u=O, txy=O 

////////////// 
1 

FIGURE 3. (a) Stick-slip problem, showing element pattern and boundary conditions. 
Along centre-lime, slip conditions were specified, halving the field. All distances scaled 
using channel half-width L as unit. ( b )  Details of boundary conditions imposed at nodes in 
neighbourhood of singularity S. Points left of S, and S itself, have ‘stick’ boundary con- 
ditions, others ‘slip’, beginning a t  xIL = 0.02. 

striking, even for the velocity a t  the first midside node (x = 0-02). The velocity 
elsewhere in the field is too close to the Richardson solution to justify graphical 
comparison. 

A more severe test of the program is to consider the other detailed results given 
by Richardson, notably the centre-line pressure and the normal stress on the 
‘slip’ part of the wall. The former is closely calculated (figure 4 ( b ) ) ,  and the latter 
(figure 4(c)) given adequately. It should be noted that, near the origin, the 
component t,, at the wall is the only non-singular stress component and thus 
the latter test is very severe. For many problems, the indicated accuracy is 
adequate to handle the singularity; it would of course be possible to refine the 
mesh by resolving the problem near the singularity to get more accuracy. Con- 
sideration was also given to the idea of inserting a special element containing the 
right kind of singular behaviour; this has the disadvantage that one needs to 
know what kind of singularity to feed in in advance, and also needs much more 
special programming. Hence we have not used special elements here, as it is 
anticipated that they would be very cumbersome in future non-Newtonian corn 
putation. 
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FIGURE 4. Comparison of analytical solution with (a) dimensionless velocity field along 
dip wall (in computed solution 'ii = 1-0); (b)  dimensionless pressure along duct centre- 
line P,, y = 0 (pressure made dimensionless using a pressure @& where L is channel 
half-width, and qZ/L is 1.0 in the computed solution); ( G )  dimensionless normal thrust 
- tuuL/@ on slip wall. 

(4 ( b )  (4 
Richardson (1970b) analytical solution + 
Computed, 135 elements 0 + X 
Asymptotic value (equation (4.3)) -_- -  

-.- - 

We have also computed the results for the axisymmetric version of the stick- 
slip problem; they are very similar in character to the plane problem. It appears 
that the strength of the singularity is closely related to the upstream shear rate: 
in (4.3) the magnitude of the dimensionless upstream shear rate is 3; in our 
axisymmetric problem the shear rate and the singularity strength were about + of those in the plane case. 

5. Solution of the Newtonian die-swell problem and comparison with 
experiments 

Because of the weak effect of surface tension and the interest in seeing if there 
is a steady jet flow in the limiting case, we shall only present here the results for 
creeping jets without surface tension. The only comparable calculations known 
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FIGURE 5. Newtonian jet ( a )  problem mesh pattern, (b )  axial velocity contours, (c) radial 
velocity contours, (6) jet radial stress t, R0/q% contours, ( e )  axial stress fR , /@ contours, 
( f )  shear stress trsR0/@ contours, (9) zero-pressure contour (positive pressure a t  centre-line). 
Values on contours correspond to dimensionless velocities ((6) and (c)) and stresses ((d)-( j)) ,  
as follows. 

(1) (2) (3) (4) (5)  
(6) 0.1 0.3 0.5 0.7 0.9 

(a) -17 - 15 - 13 - 11 - 9  
( e )  -16.4 - 13.1 - 9.9 - 6.7 - 3.4 
(S) -6 .0  - 5.3 - 4.7 - 4.0 - 3.4 

(6) 1.1 1-3 1.5 1.7 1.9 

(4 - 7  - 5  - 3  - 1  1 

(f)  -2.7 - 2.0 - 1.4 - 0.7 0 

(c )  0.014 0.042 0.070 0.098 0.126 

(6) (7)  (8) (9) (10) 

(c) 0.154 0.182 0.210 0.238 0,266 

( e )  -0.2 3.1 6.3 9.6 12.8 
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FIGURE 6. Comparison of computed jet shape (-) with our own experiments ( x and 
those of Batchelor & Horsfall (1971) (0  ). In all cases Re < and surface tension para- 
meter paR, /~ /~  < The equation of the least-squares fitted curve is R/R, = +0.135 
(1 -exp -2.0671rt). 

to us are the unsatisfactory attempts of Horsfall(l971) and Waldron (1 966). Since 
the jet profile is initially unknown, iteration is necessary. On the free surface 
we have the simultaneous requirement that  the stress vector is zero (taking 
ambient pressure as given and ignoring air drag) and the velocity normal to the 
surface is zero. The successful iteration scheme used prescribes a shape with 
zero stress boundary conditions and computes the velocity field. In  general, we 
shall not have prescribed a stream surface, and the normal velocity will not be 
zero. A new stream surface can now be computed, starting from a known fixed 
point (the tube lip in the jet problem) and the process repeated until it converges. 
Typically 4 it,erations were adequate for the jet problem; for example, final 
dimensionless diameters of 1.1 16, 1.126, 1.128, 1.128 were obtained successively 
starting from a diameter of 1.000. Contour plots are automatically drawn for 
any of 17 variables. I n  figures 5 (b) - (g)  we show the results for the fieldsv,, v,, t,,, 
t,,, t,, and the zero contour of p .  The element pattern, shown in figure 5 (a ) ,  was 
similar to that used for the stick-slip problem. In  these plots, velocities are 
made dimensionless using the mean axial flow rate U, and the stresses are made 
dimensionless by using yZ/R,; thus, at the wall far inside the tube, the dimension- 
less shear stress is - 4.0. (The contour values in the figure captions are dimension- 
less.) We see that the Newtonian die-swell is about 13 %. A comparison of the jet 
shape from experiments (Batchelor & Horsfall 1971) and the computation is 
shown in figure 6; our own unpublished experiments on silicone fluid, mentioned 
in 3 1, are marked with crosses. Interfacial tension, inertia, and external drag 
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FIUURE 7. Dimensionless tensile stress t&,/qZ across tube exit plane. 

due to the surrounding medium were very low in comparison with viscous forces 
in both these sets of experiments, and the computational conditions, in which 
interfacial tension, inertia, and external drag are set equal to zero, are relevant. 

The dominant feature in all these calculations is the remarkable stress singu- 
larity at  the exit lip of the die; theoretically, an instantaneous switch takes place 
there from a very large shear stress to an even larger tensile stress at  the outer 
edge of the jet. As one can see from figures 5 (d)-(f), the stress field is remark- 
ably complex, and is highly non-viscometric near the tube tip. In  the present 
computation, one may cross-plot from figure 5 ( e ) ,  to find that the dimensionless 
shear stress along the tube wall changes from its Poiseuille-flow value of - 4.0 
to larger magnitudes as the lip is approached close to the lip; the magnitude of the 
shear stress is given roughly by 

7% 
Rex*' t, = 1.65- 

where x is the dimensionless distance from the tube lip inside the tube. Outside 
the tube, the shear stress a t  the surface is zero, but the tensile stress has the same 
form as (5.1), except that the numerical coefficient is about twice the value given 
there. In  figure 7 we plot the dimensionless tensile stress t,,Ro/rp a t  the tube exit. 
Since we have a tensile stress a t  the outer radius, and the total axial load is zero, 
i t  is inevitable that the axial stress near the axis of symmetry is compressive. 
It is also true that the pressure on the axis is positive a t  the exit plane (figure 
5 ( g ) ) ,  and extrapolation of the pressure at the wall does not yield a zero exit 
pressure. It seems likely that the compressive stresses on the axis are the most 
important factor directly affecting the swelling. There may be other factors; 
for example, the change of boundary conditions at the singularity might have 
required a change in stream direction to satisfy all conditions. However, following 
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Michael (1958)) it  is known that no change in direction is needed to satisfy all 
boundary conditions. By comparing the result of (4.2) for the pressure drop into 
(or out of) a tube from (or into) a large reservoir with the results of figure 5 (e), 
we see that the rate of energy dissipation (above the Poiseuille losses) is only 
about 45 of that given by (4.2). 

6. Closure 
The present work shows that the use of finite-element methods for free-surface 

viscous flow problems is elegant, and that results of acceptable accuracy can be 
produced with a reasonable expenditure of computing effort. The accuracy 
attained in a particular problem is clearly a function of the number of elements 
used and their distribution, which in turn governs the time for solution. In  the 
stick-slip problem considered here, the primary variables u, w, and p are deter- 
mined at a level better than 1 yo almost everywhere, but the stress components 
may be up to several per cent in error, especially near the singularity (see figure 
4(c)). Overall quantities, such as pressure drop, are more accurate with only a 
fraction of a per cent error observed (compare (4.1) and (4.2)) for the inlet 
problem. For these problems one iteration with 135 elements (897 unknowns) 
consumed 5.16 minutes of central processing unit time on the IBM 360/67, but 
this time may be greatly reduced if lower accuracy is acceptable. 

We have used the program to solve a difficult flow problem, which already gives 
us some insight into the type of problems that will be encountered in studying 
non-Newtonian die-swell. The presence of a stress singularity is inevitable in 
many of these problems, and the program must be able to handle it. The 
treatment of the convective acceleration terms is a subject of current research 
activity, and, with the addition of a time integration operator for transient 
problems (Taylor & Hood 1973), should create a powerful tool for analysis. 

This work was partially supported by a National Science Foundation grant 
and by an Office of Naval Research grant at Brown University. Computing time 
was donated by the University Computing Centre. 
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